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Stray Insensitive SC Amplifiers
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Can show that all diffusion parasitic capacitances do not affect gain

Gain can be accurately controlled !
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Note that large resistors require small capacitors !

This offers potential for overcoming one of the critical challenges for 

Implementing integrators on silicon at audio frequencies!

Observe that a switched-capacitor behaves as a resistor!

This is an interesting observation that was made by Maxwell over 100 years

ago but in and of itself was of almost no consequence

Review from last lecture



The Genius !!
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1. Accuracy of R and C difficult to accurately control 

(often 2 or 3 orders of magnitude to variable)

2. Area of R and C too large in audio frequency range

(2 or 3 orders of magnitude too large)

3. Amplifier GB limits performance

1. Accuracy of cap ratio and fCLK very good 

2. Area of C1 and C not too large

3. Amplifier GB limits performance less

Observation of Maxwell (and other “Me Too” up until 1977)  on equivalence of resistor 

and switched capacitor  had no impact 

Two groups independently observed items 1) and 2) in 1976/1977 timeframe and realized that 

practical implementations on silicon were possible and that is the genius of the concept

Switched Capacitors and the corresponding charge redistribution circuits now used well beyond 

the SC filter field 

Incredible enthusiasm and effort followed for better part of a decade

Review from last lecture



Switched-Capacitor Filter Issues
What if TCLK is not much-much smaller than TSIG?
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VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT)

for any TCLK, characterized in time domain by difference equation 

or in frequency domain characterized by transfer function obtained by taking

z-transform of the difference equation
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Review from last lecture



What is really required for building a filter that has high-performance features?
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Accurate control of polynomial coefficients in transfer function or accurate control

of coefficients in the differential/difference equation
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VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT)

Difference Equation

Review from last lecture



Consider the following circuit
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Termed a flip-around amplifier

Clock signals are complimentary non-overlapping

Review from last lecture



From phase φ1

Another Flip Around Amplifier

During phase φ2
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This structure has a gain of 2 

independent of any capacitor 

matching!

Verified that CB was discharged at 

the start of phase φ1

Can modify to get noninverting gain 

and gains of 3, 4, .., without matching 

requirements

Review from last lecture



Bias Voltages/Currents and 

References

How  do we get quantities such as 

voltage, current, resistance,

temperature, ?....  in an electronic 

circuit



Bias Voltages/Currents and References
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How are these voltages and currents generated?



Bias Voltages/Currents and References
How are these voltages and currents generated?
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All will work !

Termed Supply-Referenced Sources

But supply sensitivity (supplies usually poorly controlled and noisy), process 

dependence, and temperature dependence unacceptable in many applications 



Bias Voltages/Currents and References
How are these voltages and currents generated?
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For voltage references, must find circuit that generates output that has units Volts !

For current references, must find circuit that generates output that has units Amps !
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Bias Voltages/Currents Generators
How are these voltages and currents generated?

Supply-independent Bias Generator!

Supply-independent Bias Generators Widely Used 
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Inverse-Widlar M54 is the M5:M4 Current Mirror Gain

Start-up circuit needed (notice positive feedback loop)

Voltage Outputs:  



Bias Voltages/Currents Generators
How are these voltages and currents generated?

Supply-independent Bias Generator!

Supply-independent Bias Generators Widely Used 
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Inverse-Widlar

M54 is the M5:M4 Current Mirror Gain

Start-up circuit needed (notice positive feedback loop)
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Bias Voltages/Currents Generators

Widlar Generator ! M45 is the M4:M5 Current Mirror Gain
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Supply-independent Bias Generator!

Supply-independent Bias Generators Widely Used 

Start-up circuit needed (notice positive feedback loop)

Voltage Outputs:  



Bias Voltages/Currents Generators

Widlar Generator !

M45 is the M4:M5 Current Mirror Gain
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Supply-independent Bias Generator!

Supply-independent Bias Generators Widely Used 

Start-up circuit needed (notice positive feedback loop)
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VDD

M4

M1 M2

M5

VOUT2(T)

R1

M6

IOUT-Sink

M7

IOUT-Source
( )nk

26
Si 02

62
n OX

OUT Tn

C W
I V V

L
−


= −

2
1 1 Tn 1

02 Tn

V
V V

2 2 2

   
= +  +  

 

( )
251 7

S 02

1 7 52
n OX

OUT ource Tn

C LW W
I V V

L L W
−


= −



Bias Voltages/Currents Generators

Widlar Generator !

M65 is the M6:M5 Current Mirror Gain
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Supply-independent Bias Generator!

Supply-independent Bias Generators Widely Used 

Start-up circuit needed (notice positive feedback loop)



Bias Voltages/Currents Generators
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Need for Start-up Circuit  

VOUT=f(VIN) termed the return map

Termed Homotopy Analysis

Must not perturb operating point when breaking loop ! 



Bias Voltages/Currents Generators
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Bias Voltages/Currents Generators
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Must verify start-up is effective over PVT variations
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Bias Voltages/Currents Generators
VDD
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Start Up Circuit

This start-up circuit shuts off during normal operation !

Several different start-up circuits have been used



Bias Voltages/Currents Generators

These references/bias generators are both 

temperature and process dependent



Bias Voltages/Currents Generators

• Often prefer bias generators whose output changes with process 

parameters

• Though widely used, better biases exist for many linear circuits (e.g. op 

amps)

• But these bias generators, though simple,  are process and temperature 

dependent

• The term “References” usually refers to generators that are ideally 

independent of  process, supply voltage, and temperature (PVT)



Types of References

• Voltage References

• Current References

• Time References

• ….

Sensors Closely Related

• Temperature

• Period

• Resistance

• Capacitance

• ….



XBIAS
XREFReference

Circuit



VBIAS
VREF

Voltage 

Reference

Circuit
VREF

Voltage Reference



Current  Reference

VBIAS
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Current

Reference

Circuit

IREF



Desired Properties of References

VBIAS
VREF

Voltage 

Reference

Circuit

• Accurate

• Temperature Stable

• Time Stable

• Insensitive to VBIAS

• Low Output Impedance (voltage reference)

• Floating

• Small Area

• Low Power Dissipation

• Process Tolerant

• Process Transportable



Desired Properties of References

VBIAS
VREF

Voltage 

Reference

Circuit

• Accurate

• Temperature Stable

• Time Stable

• Insensitive to VBIAS

• Low Output Impedance (voltage reference)

• Floating

• Small Area

• Low Power Dissipation

• Process Tolerant

• Process Transportable

Similar properties desired in other references



Consider Voltage References
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Popular Voltage “Reference”



Consider Voltage References

VBIAS
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Voltage 

Reference

Circuit
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If matching assumed and γ effects neglected

Popular Voltage “Reference” Dependent upon VDD, VTH0, 

matching, process variations, γ

Termed a VDD,VTH reference

Does not satisfy key properties of voltage 

references

Uses as a reference limited to 

biasing and even for this may not 

be good enough !



Consider Voltage References
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Circuit
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VDD,VT reference

Observation – Variables with units Volts needed to build any voltage reference



Voltage References

VBIAS
VREF

Voltage 

Reference

Circuit

Observation – Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?

What variables which have units volts satisfy the desired properties of a 

voltage reference?

How can a circuit be designed that “expresses” the desired variables?



Voltage References

VBIAS
VREF

Voltage 

Reference

Circuit

Observation – Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?

VDD, VT, VD (diode) ,VZ,VBE,Vt ,VTH ???

What variables which have units volts satisfy the desired properties of a 

voltage reference?

How can a circuit be designed that “expresses” the desired variables?



Voltage References

Consider the Diode
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termed the bandgap voltage



Voltage References

VBIAS
VREF

Voltage 

Reference

Circuit

Observation – Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?

VDD, VT, VD (diode) ,VZ,VBE,Vt ,VG0 ???

What variables which have units volts satisfy the desired properties of a 

voltage reference?   VG0 and ??

How can a circuit be designed that “expresses” the desired variables?



Voltage References

VBIAS
VREF

Voltage 

Reference

Circuit

• VG0 is deeply embedded in a device model with horrible temperature effects !

• Good diodes are not widely available in most MOS processes !

G0 BE

t t

-V V

V Vm

C SXI J AT e e=

VDD, VT, VD (diode) ,VZ,VBE,Vt ,VG0 ???

How can a circuit be designed that “expresses” the desired variables?

ID

VD



Voltage References

Good diodes are not widely available in most MOS processes !



Voltage References

Good diodes are not widely available in most MOS processes !

Not practical to forward bias junctionThese diodes interact and

actually form substrate pnp transistor



Voltage References

Good diodes are not widely available in most MOS processes !

Substrate pnp transistor
Diode-connected

substrate pnp



Voltage References
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Bandgap Voltage Appears in 

BJT Model Equation as well



Voltage References

VBIAS
VREF

Voltage 

Reference

Circuit

• VG0 is deeply embedded in a device model with horrible temperature effects !

• Good BJTs are not widely available in most MOS processes but the substrate 

pnp is available !

Voltage references that “express” the bandgap 

voltage are termed     “Bandgap References”



Standard Approach to Building 

Voltage References
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Standard Approach to Building 

Voltage References

Negative Temperature 

Coefficient

V

T

Positive Temperature 

Coefficient

T0



Standard Approach to Building 

Voltage References

Negative Temperature 
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Bandgap Voltage References

Consider two BJTs (or diodes)
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If the             ratio is constant and >1, the TC of ΔVBE is positive

ΔVBE is termed a  PTAT voltage (Proportional to Absolute Temperature)

This relationship applies irrespective of how temperature dependent IC1 and IC2 may be 

provided the ratio is constant !!
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Exponential form

Logarithmic form…….



Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

C2 E1
BE2 BE1 BE

C1 E2

I Ak
V V ΔV ln T

q I A

  
− = =   

   

( )BE2 BE1 C2 E1

C1 E2

V V I Ak
ln

T q I A

 −  
=  

  

  25.8mVx3008.6x10VV 5

BE1BE2 ==− −

At room temperature if 

( )
CV/868.6x10

T

VV o5

K300TT

BE1BE2

o
0

μ==


− −

==

and

The temperature coefficient of the PTAT voltage is rather small

C2 E1

C1 E2

I A
ln 1

I A

 
= 

 



Q1

VBE1

Bandgap Voltage References
Consider two BJTs (or diodes)
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The temperature coefficient of the PTAT voltage is rather small even if large

collector current ratios are used
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Bandgap Voltage References
Consider two BJTs (or diodes)  
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If IC is independent of temperature, it follows that 
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Typically, m=2.3, VG0=1.2V Assume VBE≈0.65V



Q1

VBE1

Bandgap Voltage References
Consider two BJTs (or diodes) Q2

VBE2

Thus  if IC independent of temperature
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Magnitude of TC of PTAT source is much smaller than that of VBE source
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If we want K will need to be large

Typically, m=2.3, VG0=1.2V
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 
and if 

XN=VBE XP=VBE2-VBE1

Define: Create circuit with:

V

TT0

XN+KXP

Assume VBE≈0.65V



Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

It was just shown that if IC is independent of temperature
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If IC is reasonably independent of temperature, VBE will still provide a negative TC

C
BE G0 t t

SX E

I
V =  V +V ln -mV lnT

J A

 
 
 
 

Even if  IC is highly dependent on temperature, VBE will still provide a negative TC

Observe VG0 appears prominently in VBE



Q1

VBE1

Bandgap Voltage References

Consider two BJTs (or diodes)

Q2

VBE2

Key observation about diodes and diode-connected BJTs

1. If ratio of currents in two devices is constant, ΔVBE is PTAT independent of the 

temperature dependence of the currents  and temperature  sensitivity is small

2. VBE has a negative temperature coefficient  for a wide range of temperature 

dependent or temperature independent currents and temperature sensitivity is 

much larger than that of ΔVBE



Bandgap Reference Circuits

• Circuits that implement ΔVBE and VBE or ΔVD

and VD widely used to build bandgap 

references

VD1VD2



VBE and ΔVBE with constant IC
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VBE plot for constant IC
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Combined effects of the T and TlnT terms in VBE is nearly linear dependent on T



Comparison of VBE with constant 

current and PTAT current
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Even if IC is highly-dependent on current,  temperature dependence of VBE is 

still nearly linearly dependent upon T 



Early Bandgap Reference (and still widely used!)
V

DD

V
REF

R
1

R
2

R
3 R

4

Q
1

Q
2

P.Brokaw, “A Simple Three-Terminal IC Bandgap Reference”, IEEE 

Journal of Solid State Circuits, Vol. 9, pp. 388-393, Dec. 1974.

• Brokaw coined term “bandgap reference” when referring to this circuit

• Properties very similar circuits introduced by Widlar and Kujik a small while earlier

• Paper submitted May 1974, Widlar paper submitted March 1970



Widlar observed ∆VBE is PTAT in 1965

Widlar retired in Dec. 1970 at the age of 33



Most Published Analysis of Bandgap Circuits

( ) ( ) 02
REF G0 BE0 G0

0 1

TJT kT kT
V =V + V -V +K ln + m-1 ln

T q J q T

   
   

  
where K is the gain of the PTAT signal 

Negative 

Temperature 

Coefficient 

(NTC)

K

Positive 

Temperature 

Coefficient 

(PTC)

XOUT

XN

XP

(Not a solution and dependent upon both T0 and VBE0)

VREF often expressed as:



First Bandgap Reference (and still widely used!)
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From these equations can show

Not a solution but can provide zero temp slope by adjusting R1
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First Bandgap Reference (and still widely used!)

VDD

VREF
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R3 R4
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Will now obtain solution for VREF (in terms of component values and model parameters)
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First Bandgap Reference (and still widely used!)
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From the expression for VBE2 and some routine but tedious 

manipulations it follows that
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Will now obtain solution for VREF (in terms of component values and model parameters)
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First Bandgap Reference (and still widely used!)
VDD
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It thus follows that:

( )( )3 3 3 31 E1 E1 1 1
REF G0 t t SX2

2 4 E2 4 E2 4 2 2 4

R R R Rα A A R αk k
V V +V ln T ln V ln I mlnT ln 1 T

R R q A R q A R R α R

            
= − + + +           

              

( ) 31 1
REF BE2 BE2 BE1

2 2 4

RR α
V V V V 1

R α R

  
= + − +  

  

3E1
BE2 BE1

E2 4

RAk
V -V = ln T

q A R

   
    
    

( ) 3 31 E1
BE2 G0 t t

4 E2 42 E2 SX

R Rα Ak
V V 1 m VlnT V ln ln

q R A RR A J

  
= + − +    

  



First Bandgap Reference (and still widely used!)
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This can be expressed after some tedious algebraic manipulations as
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First Bandgap Reference (and still widely used!)
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First Bandgap Reference (and still widely used!)
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REF 1 1 1V a b T c TlnT= + +

Only 2mV change over 200oC temp range !

Bandgap Voltage Source
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Temperature Coefficient
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TC of Bandgap Reference (+/- ppm/C)
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Banba Bandgap Reference

D1
D2

R1 R2

M1 M2
M3

R4
VREF

θ

VDD

VD1

R0

VD2

I1 I2

ID1 ID2

I3

[7] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, A. Atsumi, 

and K. Sakkui, IEEE Journal of Solid-State Circuits, Vol. 34, pp. 670-674, May 

1999.
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Note this was introduced 25 years after the Brokaw reference



Bamba Bandgap Reference
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Substituting, we obtain
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K is the ratio of I3 to I2
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I
cons tant

I
=

REF 11 11 11V a b T c TlnT= + +With some tedious algebra, it follows that 

Note this is of the same form as that of the Brokow reference !



Kujik Bandgap Reference
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[12] K. Kuijk, “A Precision Reference Voltage Source”, 

IEEE Journal of Solid State Circuits, Vol. 8, pp. 222-226, June 

1973.
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Kujik Bandgap Reference
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solving, we obtain

REF 22 22 22V a b T c TlnT= + +







REFV = a + bT+ cT lnT

Almost all of the published bandgap references have an output of the form:





• Start-up Circuits Required on all Bandgap References 

discussed here

• Bandgap circuits widely used to build voltage 

references for over 4 decades 

REFV = a + bT+ cT lnT

• Trimming often required to set inflection point at desired 

temperature 

• Offset voltage of Op Amp and TCR of resistors degrade 

performance

• Basic bandgap circuits still used today

• Experimental performance often a factor of 2 to 10 worse 

than that predicted here but still quite good

• Ongoing research activities focusing on improving 

performance of bandgap references



Stay Safe and Stay Healthy !



End of Lecture 42


